This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005) (Revised by Mario Carneiro, 27-May-2016) (Proof shortened by SN, 13-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pnpcan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − ( 𝐴 + 𝐶 ) ) = ( 𝐵 − 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) | |
| 2 | subsub4 | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐴 ) − 𝐶 ) = ( ( 𝐴 + 𝐵 ) − ( 𝐴 + 𝐶 ) ) ) | |
| 3 | 1 2 | stoic4a | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐴 ) − 𝐶 ) = ( ( 𝐴 + 𝐵 ) − ( 𝐴 + 𝐶 ) ) ) |
| 4 | pncan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 ) | |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐴 ) = 𝐵 ) |
| 6 | 5 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐴 ) − 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
| 7 | 3 6 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − ( 𝐴 + 𝐶 ) ) = ( 𝐵 − 𝐶 ) ) |