This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2dom | ⊢ ( 2o ≼ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o2 | ⊢ 2o = { ∅ , { ∅ } } | |
| 2 | 1 | breq1i | ⊢ ( 2o ≼ 𝐴 ↔ { ∅ , { ∅ } } ≼ 𝐴 ) |
| 3 | brdomi | ⊢ ( { ∅ , { ∅ } } ≼ 𝐴 → ∃ 𝑓 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 ) | |
| 4 | 2 3 | sylbi | ⊢ ( 2o ≼ 𝐴 → ∃ 𝑓 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 ) |
| 5 | f1f | ⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → 𝑓 : { ∅ , { ∅ } } ⟶ 𝐴 ) | |
| 6 | 0ex | ⊢ ∅ ∈ V | |
| 7 | 6 | prid1 | ⊢ ∅ ∈ { ∅ , { ∅ } } |
| 8 | ffvelcdm | ⊢ ( ( 𝑓 : { ∅ , { ∅ } } ⟶ 𝐴 ∧ ∅ ∈ { ∅ , { ∅ } } ) → ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) | |
| 9 | 5 7 8 | sylancl | ⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) |
| 10 | snex | ⊢ { ∅ } ∈ V | |
| 11 | 10 | prid2 | ⊢ { ∅ } ∈ { ∅ , { ∅ } } |
| 12 | ffvelcdm | ⊢ ( ( 𝑓 : { ∅ , { ∅ } } ⟶ 𝐴 ∧ { ∅ } ∈ { ∅ , { ∅ } } ) → ( 𝑓 ‘ { ∅ } ) ∈ 𝐴 ) | |
| 13 | 5 11 12 | sylancl | ⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ( 𝑓 ‘ { ∅ } ) ∈ 𝐴 ) |
| 14 | 0nep0 | ⊢ ∅ ≠ { ∅ } | |
| 15 | 14 | neii | ⊢ ¬ ∅ = { ∅ } |
| 16 | f1fveq | ⊢ ( ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 ∧ ( ∅ ∈ { ∅ , { ∅ } } ∧ { ∅ } ∈ { ∅ , { ∅ } } ) ) → ( ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ↔ ∅ = { ∅ } ) ) | |
| 17 | 7 11 16 | mpanr12 | ⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ( ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ↔ ∅ = { ∅ } ) ) |
| 18 | 15 17 | mtbiri | ⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ¬ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) |
| 19 | eqeq1 | ⊢ ( 𝑥 = ( 𝑓 ‘ ∅ ) → ( 𝑥 = 𝑦 ↔ ( 𝑓 ‘ ∅ ) = 𝑦 ) ) | |
| 20 | 19 | notbid | ⊢ ( 𝑥 = ( 𝑓 ‘ ∅ ) → ( ¬ 𝑥 = 𝑦 ↔ ¬ ( 𝑓 ‘ ∅ ) = 𝑦 ) ) |
| 21 | eqeq2 | ⊢ ( 𝑦 = ( 𝑓 ‘ { ∅ } ) → ( ( 𝑓 ‘ ∅ ) = 𝑦 ↔ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) ) | |
| 22 | 21 | notbid | ⊢ ( 𝑦 = ( 𝑓 ‘ { ∅ } ) → ( ¬ ( 𝑓 ‘ ∅ ) = 𝑦 ↔ ¬ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) ) |
| 23 | 20 22 | rspc2ev | ⊢ ( ( ( 𝑓 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝑓 ‘ { ∅ } ) ∈ 𝐴 ∧ ¬ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |
| 24 | 9 13 18 23 | syl3anc | ⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |
| 25 | 24 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |
| 26 | 4 25 | syl | ⊢ ( 2o ≼ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |