This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse of the ring unity is the ring unity. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1rinv.1 | |- I = ( invr ` R ) |
|
| 1rinv.2 | |- .1. = ( 1r ` R ) |
||
| Assertion | 1rinv | |- ( R e. Ring -> ( I ` .1. ) = .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1rinv.1 | |- I = ( invr ` R ) |
|
| 2 | 1rinv.2 | |- .1. = ( 1r ` R ) |
|
| 3 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 4 | 3 2 | 1unit | |- ( R e. Ring -> .1. e. ( Unit ` R ) ) |
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 3 1 5 | ringinvcl | |- ( ( R e. Ring /\ .1. e. ( Unit ` R ) ) -> ( I ` .1. ) e. ( Base ` R ) ) |
| 7 | 4 6 | mpdan | |- ( R e. Ring -> ( I ` .1. ) e. ( Base ` R ) ) |
| 8 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 9 | 5 8 2 | ringlidm | |- ( ( R e. Ring /\ ( I ` .1. ) e. ( Base ` R ) ) -> ( .1. ( .r ` R ) ( I ` .1. ) ) = ( I ` .1. ) ) |
| 10 | 7 9 | mpdan | |- ( R e. Ring -> ( .1. ( .r ` R ) ( I ` .1. ) ) = ( I ` .1. ) ) |
| 11 | 3 1 8 2 | unitrinv | |- ( ( R e. Ring /\ .1. e. ( Unit ` R ) ) -> ( .1. ( .r ` R ) ( I ` .1. ) ) = .1. ) |
| 12 | 4 11 | mpdan | |- ( R e. Ring -> ( .1. ( .r ` R ) ( I ` .1. ) ) = .1. ) |
| 13 | 10 12 | eqtr3d | |- ( R e. Ring -> ( I ` .1. ) = .1. ) |