This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One is less than two (one plus one). (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1lt2pi | |- 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn | |- 1o e. _om |
|
| 2 | nna0 | |- ( 1o e. _om -> ( 1o +o (/) ) = 1o ) |
|
| 3 | 1 2 | ax-mp | |- ( 1o +o (/) ) = 1o |
| 4 | 0lt1o | |- (/) e. 1o |
|
| 5 | peano1 | |- (/) e. _om |
|
| 6 | nnaord | |- ( ( (/) e. _om /\ 1o e. _om /\ 1o e. _om ) -> ( (/) e. 1o <-> ( 1o +o (/) ) e. ( 1o +o 1o ) ) ) |
|
| 7 | 5 1 1 6 | mp3an | |- ( (/) e. 1o <-> ( 1o +o (/) ) e. ( 1o +o 1o ) ) |
| 8 | 4 7 | mpbi | |- ( 1o +o (/) ) e. ( 1o +o 1o ) |
| 9 | 3 8 | eqeltrri | |- 1o e. ( 1o +o 1o ) |
| 10 | 1pi | |- 1o e. N. |
|
| 11 | addpiord | |- ( ( 1o e. N. /\ 1o e. N. ) -> ( 1o +N 1o ) = ( 1o +o 1o ) ) |
|
| 12 | 10 10 11 | mp2an | |- ( 1o +N 1o ) = ( 1o +o 1o ) |
| 13 | 9 12 | eleqtrri | |- 1o e. ( 1o +N 1o ) |
| 14 | addclpi | |- ( ( 1o e. N. /\ 1o e. N. ) -> ( 1o +N 1o ) e. N. ) |
|
| 15 | 10 10 14 | mp2an | |- ( 1o +N 1o ) e. N. |
| 16 | ltpiord | |- ( ( 1o e. N. /\ ( 1o +N 1o ) e. N. ) -> ( 1o |
|
| 17 | 10 15 16 | mp2an | |- ( 1o |
| 18 | 13 17 | mpbir | |- 1o |