This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree of vertex D in a graph G with only one hyperedge E is 0 if D is not incident with the edge E . (Contributed by AV, 2-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1hevtxdg0.i | |- ( ph -> ( iEdg ` G ) = { <. A , E >. } ) |
|
| 1hevtxdg0.v | |- ( ph -> ( Vtx ` G ) = V ) |
||
| 1hevtxdg0.a | |- ( ph -> A e. X ) |
||
| 1hevtxdg0.d | |- ( ph -> D e. V ) |
||
| 1hevtxdg0.e | |- ( ph -> E e. Y ) |
||
| 1hevtxdg0.n | |- ( ph -> D e/ E ) |
||
| Assertion | 1hevtxdg0 | |- ( ph -> ( ( VtxDeg ` G ) ` D ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1hevtxdg0.i | |- ( ph -> ( iEdg ` G ) = { <. A , E >. } ) |
|
| 2 | 1hevtxdg0.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 3 | 1hevtxdg0.a | |- ( ph -> A e. X ) |
|
| 4 | 1hevtxdg0.d | |- ( ph -> D e. V ) |
|
| 5 | 1hevtxdg0.e | |- ( ph -> E e. Y ) |
|
| 6 | 1hevtxdg0.n | |- ( ph -> D e/ E ) |
|
| 7 | df-nel | |- ( D e/ E <-> -. D e. E ) |
|
| 8 | 6 7 | sylib | |- ( ph -> -. D e. E ) |
| 9 | 1 | fveq1d | |- ( ph -> ( ( iEdg ` G ) ` A ) = ( { <. A , E >. } ` A ) ) |
| 10 | fvsng | |- ( ( A e. X /\ E e. Y ) -> ( { <. A , E >. } ` A ) = E ) |
|
| 11 | 3 5 10 | syl2anc | |- ( ph -> ( { <. A , E >. } ` A ) = E ) |
| 12 | 9 11 | eqtrd | |- ( ph -> ( ( iEdg ` G ) ` A ) = E ) |
| 13 | 8 12 | neleqtrrd | |- ( ph -> -. D e. ( ( iEdg ` G ) ` A ) ) |
| 14 | fveq2 | |- ( x = A -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` A ) ) |
|
| 15 | 14 | eleq2d | |- ( x = A -> ( D e. ( ( iEdg ` G ) ` x ) <-> D e. ( ( iEdg ` G ) ` A ) ) ) |
| 16 | 15 | notbid | |- ( x = A -> ( -. D e. ( ( iEdg ` G ) ` x ) <-> -. D e. ( ( iEdg ` G ) ` A ) ) ) |
| 17 | 16 | ralsng | |- ( A e. X -> ( A. x e. { A } -. D e. ( ( iEdg ` G ) ` x ) <-> -. D e. ( ( iEdg ` G ) ` A ) ) ) |
| 18 | 3 17 | syl | |- ( ph -> ( A. x e. { A } -. D e. ( ( iEdg ` G ) ` x ) <-> -. D e. ( ( iEdg ` G ) ` A ) ) ) |
| 19 | 13 18 | mpbird | |- ( ph -> A. x e. { A } -. D e. ( ( iEdg ` G ) ` x ) ) |
| 20 | 1 | dmeqd | |- ( ph -> dom ( iEdg ` G ) = dom { <. A , E >. } ) |
| 21 | dmsnopg | |- ( E e. Y -> dom { <. A , E >. } = { A } ) |
|
| 22 | 5 21 | syl | |- ( ph -> dom { <. A , E >. } = { A } ) |
| 23 | 20 22 | eqtrd | |- ( ph -> dom ( iEdg ` G ) = { A } ) |
| 24 | 19 23 | raleqtrrdv | |- ( ph -> A. x e. dom ( iEdg ` G ) -. D e. ( ( iEdg ` G ) ` x ) ) |
| 25 | ralnex | |- ( A. x e. dom ( iEdg ` G ) -. D e. ( ( iEdg ` G ) ` x ) <-> -. E. x e. dom ( iEdg ` G ) D e. ( ( iEdg ` G ) ` x ) ) |
|
| 26 | 24 25 | sylib | |- ( ph -> -. E. x e. dom ( iEdg ` G ) D e. ( ( iEdg ` G ) ` x ) ) |
| 27 | 2 | eleq2d | |- ( ph -> ( D e. ( Vtx ` G ) <-> D e. V ) ) |
| 28 | 4 27 | mpbird | |- ( ph -> D e. ( Vtx ` G ) ) |
| 29 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 30 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 31 | eqid | |- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
|
| 32 | 29 30 31 | vtxd0nedgb | |- ( D e. ( Vtx ` G ) -> ( ( ( VtxDeg ` G ) ` D ) = 0 <-> -. E. x e. dom ( iEdg ` G ) D e. ( ( iEdg ` G ) ` x ) ) ) |
| 33 | 28 32 | syl | |- ( ph -> ( ( ( VtxDeg ` G ) ` D ) = 0 <-> -. E. x e. dom ( iEdg ` G ) D e. ( ( iEdg ` G ) ` x ) ) ) |
| 34 | 26 33 | mpbird | |- ( ph -> ( ( VtxDeg ` G ) ` D ) = 0 ) |