This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair of an empty set (of edges) and a second set (of vertices) is a simple path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 18-Jan-2021) (Revised by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0pth.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | 0spth | ⊢ ( 𝐺 ∈ 𝑊 → ( ∅ ( SPaths ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pth.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | 0trl | ⊢ ( 𝐺 ∈ 𝑊 → ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |
| 3 | 2 | anbi1d | ⊢ ( 𝐺 ∈ 𝑊 → ( ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ↔ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ Fun ◡ 𝑃 ) ) ) |
| 4 | isspth | ⊢ ( ∅ ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( ∅ ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) | |
| 5 | fz0sn | ⊢ ( 0 ... 0 ) = { 0 } | |
| 6 | 5 | feq2i | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ↔ 𝑃 : { 0 } ⟶ 𝑉 ) |
| 7 | c0ex | ⊢ 0 ∈ V | |
| 8 | 7 | fsn2 | ⊢ ( 𝑃 : { 0 } ⟶ 𝑉 ↔ ( ( 𝑃 ‘ 0 ) ∈ 𝑉 ∧ 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 } ) ) |
| 9 | funcnvsn | ⊢ Fun ◡ { 〈 0 , ( 𝑃 ‘ 0 ) 〉 } | |
| 10 | cnveq | ⊢ ( 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 } → ◡ 𝑃 = ◡ { 〈 0 , ( 𝑃 ‘ 0 ) 〉 } ) | |
| 11 | 10 | funeqd | ⊢ ( 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 } → ( Fun ◡ 𝑃 ↔ Fun ◡ { 〈 0 , ( 𝑃 ‘ 0 ) 〉 } ) ) |
| 12 | 9 11 | mpbiri | ⊢ ( 𝑃 = { 〈 0 , ( 𝑃 ‘ 0 ) 〉 } → Fun ◡ 𝑃 ) |
| 13 | 8 12 | simplbiim | ⊢ ( 𝑃 : { 0 } ⟶ 𝑉 → Fun ◡ 𝑃 ) |
| 14 | 6 13 | sylbi | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 → Fun ◡ 𝑃 ) |
| 15 | 14 | pm4.71i | ⊢ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ↔ ( 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ∧ Fun ◡ 𝑃 ) ) |
| 16 | 3 4 15 | 3bitr4g | ⊢ ( 𝐺 ∈ 𝑊 → ( ∅ ( SPaths ‘ 𝐺 ) 𝑃 ↔ 𝑃 : ( 0 ... 0 ) ⟶ 𝑉 ) ) |