This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair of an empty set (of edges) and a second set (of vertices) is a simple path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 18-Jan-2021) (Revised by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0pth.v | |- V = ( Vtx ` G ) |
|
| Assertion | 0spth | |- ( G e. W -> ( (/) ( SPaths ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pth.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | 0trl | |- ( G e. W -> ( (/) ( Trails ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 3 | 2 | anbi1d | |- ( G e. W -> ( ( (/) ( Trails ` G ) P /\ Fun `' P ) <-> ( P : ( 0 ... 0 ) --> V /\ Fun `' P ) ) ) |
| 4 | isspth | |- ( (/) ( SPaths ` G ) P <-> ( (/) ( Trails ` G ) P /\ Fun `' P ) ) |
|
| 5 | fz0sn | |- ( 0 ... 0 ) = { 0 } |
|
| 6 | 5 | feq2i | |- ( P : ( 0 ... 0 ) --> V <-> P : { 0 } --> V ) |
| 7 | c0ex | |- 0 e. _V |
|
| 8 | 7 | fsn2 | |- ( P : { 0 } --> V <-> ( ( P ` 0 ) e. V /\ P = { <. 0 , ( P ` 0 ) >. } ) ) |
| 9 | funcnvsn | |- Fun `' { <. 0 , ( P ` 0 ) >. } |
|
| 10 | cnveq | |- ( P = { <. 0 , ( P ` 0 ) >. } -> `' P = `' { <. 0 , ( P ` 0 ) >. } ) |
|
| 11 | 10 | funeqd | |- ( P = { <. 0 , ( P ` 0 ) >. } -> ( Fun `' P <-> Fun `' { <. 0 , ( P ` 0 ) >. } ) ) |
| 12 | 9 11 | mpbiri | |- ( P = { <. 0 , ( P ` 0 ) >. } -> Fun `' P ) |
| 13 | 8 12 | simplbiim | |- ( P : { 0 } --> V -> Fun `' P ) |
| 14 | 6 13 | sylbi | |- ( P : ( 0 ... 0 ) --> V -> Fun `' P ) |
| 15 | 14 | pm4.71i | |- ( P : ( 0 ... 0 ) --> V <-> ( P : ( 0 ... 0 ) --> V /\ Fun `' P ) ) |
| 16 | 3 4 15 | 3bitr4g | |- ( G e. W -> ( (/) ( SPaths ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |