This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sgmval2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 σ 𝐵 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 2 | sgmval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 σ 𝐵 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑𝑐 𝐴 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 σ 𝐵 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑𝑐 𝐴 ) ) |
| 4 | ssrab2 | ⊢ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ⊆ ℕ | |
| 5 | simpr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ) → 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ) | |
| 6 | 4 5 | sselid | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ) → 𝑘 ∈ ℕ ) |
| 7 | 6 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ) → 𝑘 ∈ ℂ ) |
| 8 | 6 | nnne0d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ) → 𝑘 ≠ 0 ) |
| 9 | simpll | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ) → 𝐴 ∈ ℤ ) | |
| 10 | 7 8 9 | cxpexpzd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) ∧ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ) → ( 𝑘 ↑𝑐 𝐴 ) = ( 𝑘 ↑ 𝐴 ) ) |
| 11 | 10 | sumeq2dv | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑𝑐 𝐴 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑ 𝐴 ) ) |
| 12 | 3 11 | eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 σ 𝐵 ) = Σ 𝑘 ∈ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ( 𝑘 ↑ 𝐴 ) ) |