This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair of an empty set (of edges) and a second set (of vertices) is a path iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 19-Jan-2021) (Revised by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0pth.v | |- V = ( Vtx ` G ) |
|
| Assertion | 0pth | |- ( G e. W -> ( (/) ( Paths ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pth.v | |- V = ( Vtx ` G ) |
|
| 2 | ispth | |- ( (/) ( Paths ` G ) P <-> ( (/) ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) ) |
|
| 3 | 2 | a1i | |- ( G e. W -> ( (/) ( Paths ` G ) P <-> ( (/) ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) ) ) |
| 4 | 3anass | |- ( ( (/) ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) <-> ( (/) ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) ) ) |
|
| 5 | 4 | a1i | |- ( G e. W -> ( ( (/) ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) <-> ( (/) ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) ) ) ) |
| 6 | funcnv0 | |- Fun `' (/) |
|
| 7 | hash0 | |- ( # ` (/) ) = 0 |
|
| 8 | 0le1 | |- 0 <_ 1 |
|
| 9 | 7 8 | eqbrtri | |- ( # ` (/) ) <_ 1 |
| 10 | 1z | |- 1 e. ZZ |
|
| 11 | 0z | |- 0 e. ZZ |
|
| 12 | 7 11 | eqeltri | |- ( # ` (/) ) e. ZZ |
| 13 | fzon | |- ( ( 1 e. ZZ /\ ( # ` (/) ) e. ZZ ) -> ( ( # ` (/) ) <_ 1 <-> ( 1 ..^ ( # ` (/) ) ) = (/) ) ) |
|
| 14 | 10 12 13 | mp2an | |- ( ( # ` (/) ) <_ 1 <-> ( 1 ..^ ( # ` (/) ) ) = (/) ) |
| 15 | 9 14 | mpbi | |- ( 1 ..^ ( # ` (/) ) ) = (/) |
| 16 | 15 | reseq2i | |- ( P |` ( 1 ..^ ( # ` (/) ) ) ) = ( P |` (/) ) |
| 17 | res0 | |- ( P |` (/) ) = (/) |
|
| 18 | 16 17 | eqtri | |- ( P |` ( 1 ..^ ( # ` (/) ) ) ) = (/) |
| 19 | 18 | cnveqi | |- `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) = `' (/) |
| 20 | 19 | funeqi | |- ( Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) <-> Fun `' (/) ) |
| 21 | 6 20 | mpbir | |- Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) |
| 22 | 15 | imaeq2i | |- ( P " ( 1 ..^ ( # ` (/) ) ) ) = ( P " (/) ) |
| 23 | ima0 | |- ( P " (/) ) = (/) |
|
| 24 | 22 23 | eqtri | |- ( P " ( 1 ..^ ( # ` (/) ) ) ) = (/) |
| 25 | 24 | ineq2i | |- ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = ( ( P " { 0 , ( # ` (/) ) } ) i^i (/) ) |
| 26 | in0 | |- ( ( P " { 0 , ( # ` (/) ) } ) i^i (/) ) = (/) |
|
| 27 | 25 26 | eqtri | |- ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) |
| 28 | 21 27 | pm3.2i | |- ( Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) |
| 29 | 28 | biantru | |- ( (/) ( Trails ` G ) P <-> ( (/) ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) ) ) |
| 30 | 5 29 | bitr4di | |- ( G e. W -> ( ( (/) ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) <-> (/) ( Trails ` G ) P ) ) |
| 31 | 1 | 0trl | |- ( G e. W -> ( (/) ( Trails ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 32 | 3 30 31 | 3bitrd | |- ( G e. W -> ( (/) ( Paths ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |