This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0lt1sr | ⊢ 0R <R 1R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr | ⊢ 1P ∈ P | |
| 2 | addclpr | ⊢ ( ( 1P ∈ P ∧ 1P ∈ P ) → ( 1P +P 1P ) ∈ P ) | |
| 3 | 1 1 2 | mp2an | ⊢ ( 1P +P 1P ) ∈ P |
| 4 | ltaddpr | ⊢ ( ( ( 1P +P 1P ) ∈ P ∧ 1P ∈ P ) → ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 1P ) ) | |
| 5 | 3 1 4 | mp2an | ⊢ ( 1P +P 1P ) <P ( ( 1P +P 1P ) +P 1P ) |
| 6 | addcompr | ⊢ ( 1P +P ( 1P +P 1P ) ) = ( ( 1P +P 1P ) +P 1P ) | |
| 7 | 5 6 | breqtrri | ⊢ ( 1P +P 1P ) <P ( 1P +P ( 1P +P 1P ) ) |
| 8 | ltsrpr | ⊢ ( [ 〈 1P , 1P 〉 ] ~R <R [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ↔ ( 1P +P 1P ) <P ( 1P +P ( 1P +P 1P ) ) ) | |
| 9 | 7 8 | mpbir | ⊢ [ 〈 1P , 1P 〉 ] ~R <R [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R |
| 10 | df-0r | ⊢ 0R = [ 〈 1P , 1P 〉 ] ~R | |
| 11 | df-1r | ⊢ 1R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R | |
| 12 | 9 10 11 | 3brtr4i | ⊢ 0R <R 1R |