This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1ne0sr | ⊢ ¬ 1R = 0R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltsosr | ⊢ <R Or R | |
| 2 | 1sr | ⊢ 1R ∈ R | |
| 3 | sonr | ⊢ ( ( <R Or R ∧ 1R ∈ R ) → ¬ 1R <R 1R ) | |
| 4 | 1 2 3 | mp2an | ⊢ ¬ 1R <R 1R |
| 5 | 0lt1sr | ⊢ 0R <R 1R | |
| 6 | breq1 | ⊢ ( 1R = 0R → ( 1R <R 1R ↔ 0R <R 1R ) ) | |
| 7 | 5 6 | mpbiri | ⊢ ( 1R = 0R → 1R <R 1R ) |
| 8 | 4 7 | mto | ⊢ ¬ 1R = 0R |