This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0g0 | |- (/) = ( 0g ` (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | base0 | |- (/) = ( Base ` (/) ) |
|
| 2 | eqid | |- ( +g ` (/) ) = ( +g ` (/) ) |
|
| 3 | eqid | |- ( 0g ` (/) ) = ( 0g ` (/) ) |
|
| 4 | 1 2 3 | grpidval | |- ( 0g ` (/) ) = ( iota e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) ) |
| 5 | noel | |- -. e e. (/) |
|
| 6 | 5 | intnanr | |- -. ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) |
| 7 | 6 | nex | |- -. E. e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) |
| 8 | euex | |- ( E! e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) -> E. e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) ) |
|
| 9 | 7 8 | mto | |- -. E! e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) |
| 10 | iotanul | |- ( -. E! e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) -> ( iota e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) ) = (/) ) |
|
| 11 | 9 10 | ax-mp | |- ( iota e ( e e. (/) /\ A. x e. (/) ( ( e ( +g ` (/) ) x ) = x /\ ( x ( +g ` (/) ) e ) = x ) ) ) = (/) |
| 12 | 4 11 | eqtr2i | |- (/) = ( 0g ` (/) ) |