This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The functor from the empty category. (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0funcg.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 0funcg.b | ⊢ ( 𝜑 → ∅ = ( Base ‘ 𝐶 ) ) | ||
| 0funcg.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| Assertion | 0funcg2 | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ ( 𝐹 = ∅ ∧ 𝐺 = ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0funcg.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 2 | 0funcg.b | ⊢ ( 𝜑 → ∅ = ( Base ‘ 𝐶 ) ) | |
| 3 | 0funcg.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 6 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 8 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 9 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 10 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 11 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 12 | 0catg | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) | |
| 13 | 1 2 12 | syl2anc | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 14 | 4 5 6 7 8 9 10 11 13 3 | isfunc | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ ( 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝐺 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 15 | 2 | feq2d | ⊢ ( 𝜑 → ( 𝐹 : ∅ ⟶ ( Base ‘ 𝐷 ) ↔ 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) ) |
| 16 | f0bi | ⊢ ( 𝐹 : ∅ ⟶ ( Base ‘ 𝐷 ) ↔ 𝐹 = ∅ ) | |
| 17 | 15 16 | bitr3di | ⊢ ( 𝜑 → ( 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ↔ 𝐹 = ∅ ) ) |
| 18 | 2 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ∅ ) |
| 19 | rzal | ⊢ ( ( Base ‘ 𝐶 ) = ∅ → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 | 4 | funcf2lem2 | ⊢ ( 𝐺 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ↔ ( 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 22 | 21 | a1i | ⊢ ( 𝜑 → ( 𝐺 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ↔ ( 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 23 | 20 22 | mpbiran2d | ⊢ ( 𝜑 → ( 𝐺 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ↔ 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 24 | 2 | sqxpeqd | ⊢ ( 𝜑 → ( ∅ × ∅ ) = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 25 | 0xp | ⊢ ( ∅ × ∅ ) = ∅ | |
| 26 | 24 25 | eqtr3di | ⊢ ( 𝜑 → ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) = ∅ ) |
| 27 | 26 | fneq2d | ⊢ ( 𝜑 → ( 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ 𝐺 Fn ∅ ) ) |
| 28 | fn0 | ⊢ ( 𝐺 Fn ∅ ↔ 𝐺 = ∅ ) | |
| 29 | 27 28 | bitrdi | ⊢ ( 𝜑 → ( 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ 𝐺 = ∅ ) ) |
| 30 | 23 29 | bitrd | ⊢ ( 𝜑 → ( 𝐺 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ↔ 𝐺 = ∅ ) ) |
| 31 | rzal | ⊢ ( ( Base ‘ 𝐶 ) = ∅ → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) | |
| 32 | 18 31 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑥 𝐺 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 33 | 14 17 30 32 | 0funcglem | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ ( 𝐹 = ∅ ∧ 𝐺 = ∅ ) ) ) |