This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any structure with an empty set of objects is a category. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0catg | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) → ∅ = ( Base ‘ 𝐶 ) ) | |
| 2 | eqidd | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) | |
| 3 | eqidd | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) ) | |
| 4 | simpl | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) → 𝐶 ∈ 𝑉 ) | |
| 5 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
| 6 | 5 | pm2.21i | ⊢ ( 𝑥 ∈ ∅ → ∅ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ 𝑥 ∈ ∅ ) → ∅ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 8 | simpr1 | ⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) → 𝑥 ∈ ∅ ) | |
| 9 | 5 | pm2.21i | ⊢ ( 𝑥 ∈ ∅ → ( ∅ ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) |
| 10 | 8 9 | syl | ⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) → ( ∅ ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) |
| 11 | simpr1 | ⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → 𝑥 ∈ ∅ ) | |
| 12 | 5 | pm2.21i | ⊢ ( 𝑥 ∈ ∅ → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ∅ ) = 𝑓 ) |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ∅ ) = 𝑓 ) |
| 14 | simp21 | ⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑥 ∈ ∅ ) | |
| 15 | 5 | pm2.21i | ⊢ ( 𝑥 ∈ ∅ → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 17 | simp2ll | ⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ) ∧ ( 𝑧 ∈ ∅ ∧ 𝑤 ∈ ∅ ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) → 𝑥 ∈ ∅ ) | |
| 18 | 5 | pm2.21i | ⊢ ( 𝑥 ∈ ∅ → ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) |
| 19 | 17 18 | syl | ⊢ ( ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) ∧ ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ) ∧ ( 𝑧 ∈ ∅ ∧ 𝑤 ∈ ∅ ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑤 ) ) ) → ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) |
| 20 | 1 2 3 4 7 10 13 16 19 | iscatd | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ ∅ = ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |