This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f0bi | ⊢ ( 𝐹 : ∅ ⟶ 𝑋 ↔ 𝐹 = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | ⊢ ( 𝐹 : ∅ ⟶ 𝑋 → 𝐹 Fn ∅ ) | |
| 2 | fn0 | ⊢ ( 𝐹 Fn ∅ ↔ 𝐹 = ∅ ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐹 : ∅ ⟶ 𝑋 → 𝐹 = ∅ ) |
| 4 | f0 | ⊢ ∅ : ∅ ⟶ 𝑋 | |
| 5 | feq1 | ⊢ ( 𝐹 = ∅ → ( 𝐹 : ∅ ⟶ 𝑋 ↔ ∅ : ∅ ⟶ 𝑋 ) ) | |
| 6 | 4 5 | mpbiri | ⊢ ( 𝐹 = ∅ → 𝐹 : ∅ ⟶ 𝑋 ) |
| 7 | 3 6 | impbii | ⊢ ( 𝐹 : ∅ ⟶ 𝑋 ↔ 𝐹 = ∅ ) |