This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The functor from the empty category. (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0funcg.c | |- ( ph -> C e. V ) |
|
| 0funcg.b | |- ( ph -> (/) = ( Base ` C ) ) |
||
| 0funcg.d | |- ( ph -> D e. Cat ) |
||
| Assertion | 0funcg2 | |- ( ph -> ( F ( C Func D ) G <-> ( F = (/) /\ G = (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0funcg.c | |- ( ph -> C e. V ) |
|
| 2 | 0funcg.b | |- ( ph -> (/) = ( Base ` C ) ) |
|
| 3 | 0funcg.d | |- ( ph -> D e. Cat ) |
|
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 6 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 7 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 8 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 9 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 10 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 11 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 12 | 0catg | |- ( ( C e. V /\ (/) = ( Base ` C ) ) -> C e. Cat ) |
|
| 13 | 1 2 12 | syl2anc | |- ( ph -> C e. Cat ) |
| 14 | 4 5 6 7 8 9 10 11 13 3 | isfunc | |- ( ph -> ( F ( C Func D ) G <-> ( F : ( Base ` C ) --> ( Base ` D ) /\ G e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` D ) ( F ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) /\ A. x e. ( Base ` C ) ( ( ( x G x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( F ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. m e. ( x ( Hom ` C ) y ) A. n e. ( y ( Hom ` C ) z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` C ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` D ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) ) ) |
| 15 | 2 | feq2d | |- ( ph -> ( F : (/) --> ( Base ` D ) <-> F : ( Base ` C ) --> ( Base ` D ) ) ) |
| 16 | f0bi | |- ( F : (/) --> ( Base ` D ) <-> F = (/) ) |
|
| 17 | 15 16 | bitr3di | |- ( ph -> ( F : ( Base ` C ) --> ( Base ` D ) <-> F = (/) ) ) |
| 18 | 2 | eqcomd | |- ( ph -> ( Base ` C ) = (/) ) |
| 19 | rzal | |- ( ( Base ` C ) = (/) -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
|
| 20 | 18 19 | syl | |- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 21 | 4 | funcf2lem2 | |- ( G e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` D ) ( F ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> ( G Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) ) |
| 22 | 21 | a1i | |- ( ph -> ( G e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` D ) ( F ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> ( G Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) ) ) |
| 23 | 20 22 | mpbiran2d | |- ( ph -> ( G e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` D ) ( F ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> G Fn ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 24 | 2 | sqxpeqd | |- ( ph -> ( (/) X. (/) ) = ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 25 | 0xp | |- ( (/) X. (/) ) = (/) |
|
| 26 | 24 25 | eqtr3di | |- ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) = (/) ) |
| 27 | 26 | fneq2d | |- ( ph -> ( G Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> G Fn (/) ) ) |
| 28 | fn0 | |- ( G Fn (/) <-> G = (/) ) |
|
| 29 | 27 28 | bitrdi | |- ( ph -> ( G Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> G = (/) ) ) |
| 30 | 23 29 | bitrd | |- ( ph -> ( G e. X_ z e. ( ( Base ` C ) X. ( Base ` C ) ) ( ( ( F ` ( 1st ` z ) ) ( Hom ` D ) ( F ` ( 2nd ` z ) ) ) ^m ( ( Hom ` C ) ` z ) ) <-> G = (/) ) ) |
| 31 | rzal | |- ( ( Base ` C ) = (/) -> A. x e. ( Base ` C ) ( ( ( x G x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( F ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. m e. ( x ( Hom ` C ) y ) A. n e. ( y ( Hom ` C ) z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` C ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` D ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) |
|
| 32 | 18 31 | syl | |- ( ph -> A. x e. ( Base ` C ) ( ( ( x G x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( F ` x ) ) /\ A. y e. ( Base ` C ) A. z e. ( Base ` C ) A. m e. ( x ( Hom ` C ) y ) A. n e. ( y ( Hom ` C ) z ) ( ( x G z ) ` ( n ( <. x , y >. ( comp ` C ) z ) m ) ) = ( ( ( y G z ) ` n ) ( <. ( F ` x ) , ( F ` y ) >. ( comp ` D ) ( F ` z ) ) ( ( x G y ) ` m ) ) ) ) |
| 33 | 14 17 30 32 | 0funcglem | |- ( ph -> ( F ( C Func D ) G <-> ( F = (/) /\ G = (/) ) ) ) |