This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of 0func . (Contributed by Zhi Wang, 7-Oct-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0func.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| Assertion | 0funcALT | ⊢ ( 𝜑 → ( ∅ Func 𝐶 ) = { 〈 ∅ , ∅ 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0func.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | relfunc | ⊢ Rel ( ∅ Func 𝐶 ) | |
| 3 | 0ex | ⊢ ∅ ∈ V | |
| 4 | 3 3 | relsnop | ⊢ Rel { 〈 ∅ , ∅ 〉 } |
| 5 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( Hom ‘ ∅ ) = ( Hom ‘ ∅ ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 9 | eqid | ⊢ ( Id ‘ ∅ ) = ( Id ‘ ∅ ) | |
| 10 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 11 | eqid | ⊢ ( comp ‘ ∅ ) = ( comp ‘ ∅ ) | |
| 12 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 13 | 0cat | ⊢ ∅ ∈ Cat | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ∅ ∈ Cat ) |
| 15 | 5 6 7 8 9 10 11 12 14 1 | isfunc | ⊢ ( 𝜑 → ( 𝑓 ( ∅ Func 𝐶 ) 𝑔 ↔ ( 𝑓 : ∅ ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ∅ × ∅ ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ ∅ ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ∅ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ ∅ ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ∅ ∀ 𝑧 ∈ ∅ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ ∅ ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ∅ ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 16 | f0bi | ⊢ ( 𝑓 : ∅ ⟶ ( Base ‘ 𝐶 ) ↔ 𝑓 = ∅ ) | |
| 17 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) | |
| 18 | 5 | funcf2lem2 | ⊢ ( 𝑔 ∈ X 𝑧 ∈ ( ∅ × ∅ ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ ∅ ) ‘ 𝑧 ) ) ↔ ( 𝑔 Fn ( ∅ × ∅ ) ∧ ∀ 𝑥 ∈ ∅ ∀ 𝑦 ∈ ∅ ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 19 | 17 18 | mpbiran2 | ⊢ ( 𝑔 ∈ X 𝑧 ∈ ( ∅ × ∅ ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ ∅ ) ‘ 𝑧 ) ) ↔ 𝑔 Fn ( ∅ × ∅ ) ) |
| 20 | 0xp | ⊢ ( ∅ × ∅ ) = ∅ | |
| 21 | 20 | fneq2i | ⊢ ( 𝑔 Fn ( ∅ × ∅ ) ↔ 𝑔 Fn ∅ ) |
| 22 | fn0 | ⊢ ( 𝑔 Fn ∅ ↔ 𝑔 = ∅ ) | |
| 23 | 19 21 22 | 3bitri | ⊢ ( 𝑔 ∈ X 𝑧 ∈ ( ∅ × ∅ ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ ∅ ) ‘ 𝑧 ) ) ↔ 𝑔 = ∅ ) |
| 24 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ ∅ ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ∅ ∀ 𝑧 ∈ ∅ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ ∅ ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ ∅ ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ∅ ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) | |
| 25 | 15 16 23 24 | 0funclem | ⊢ ( 𝜑 → ( 𝑓 ( ∅ Func 𝐶 ) 𝑔 ↔ ( 𝑓 = ∅ ∧ 𝑔 = ∅ ) ) ) |
| 26 | brsnop | ⊢ ( ( ∅ ∈ V ∧ ∅ ∈ V ) → ( 𝑓 { 〈 ∅ , ∅ 〉 } 𝑔 ↔ ( 𝑓 = ∅ ∧ 𝑔 = ∅ ) ) ) | |
| 27 | 3 3 26 | mp2an | ⊢ ( 𝑓 { 〈 ∅ , ∅ 〉 } 𝑔 ↔ ( 𝑓 = ∅ ∧ 𝑔 = ∅ ) ) |
| 28 | 25 27 | bitr4di | ⊢ ( 𝜑 → ( 𝑓 ( ∅ Func 𝐶 ) 𝑔 ↔ 𝑓 { 〈 ∅ , ∅ 〉 } 𝑔 ) ) |
| 29 | 2 4 28 | eqbrrdiv | ⊢ ( 𝜑 → ( ∅ Func 𝐶 ) = { 〈 ∅ , ∅ 〉 } ) |