This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The functor from the empty category. (Contributed by Zhi Wang, 7-Oct-2025) (Proof shortened by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0func.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| Assertion | 0func | ⊢ ( 𝜑 → ( ∅ Func 𝐶 ) = { 〈 ∅ , ∅ 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0func.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | 2 | a1i | ⊢ ( 𝜑 → ∅ ∈ V ) |
| 4 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → ∅ = ( Base ‘ ∅ ) ) |
| 6 | 3 5 1 | 0funcg | ⊢ ( 𝜑 → ( ∅ Func 𝐶 ) = { 〈 ∅ , ∅ 〉 } ) |