This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of 0func . (Contributed by Zhi Wang, 7-Oct-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0func.c | |- ( ph -> C e. Cat ) |
|
| Assertion | 0funcALT | |- ( ph -> ( (/) Func C ) = { <. (/) , (/) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0func.c | |- ( ph -> C e. Cat ) |
|
| 2 | relfunc | |- Rel ( (/) Func C ) |
|
| 3 | 0ex | |- (/) e. _V |
|
| 4 | 3 3 | relsnop | |- Rel { <. (/) , (/) >. } |
| 5 | base0 | |- (/) = ( Base ` (/) ) |
|
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | eqid | |- ( Hom ` (/) ) = ( Hom ` (/) ) |
|
| 8 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 9 | eqid | |- ( Id ` (/) ) = ( Id ` (/) ) |
|
| 10 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 11 | eqid | |- ( comp ` (/) ) = ( comp ` (/) ) |
|
| 12 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 13 | 0cat | |- (/) e. Cat |
|
| 14 | 13 | a1i | |- ( ph -> (/) e. Cat ) |
| 15 | 5 6 7 8 9 10 11 12 14 1 | isfunc | |- ( ph -> ( f ( (/) Func C ) g <-> ( f : (/) --> ( Base ` C ) /\ g e. X_ z e. ( (/) X. (/) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` C ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` (/) ) ` z ) ) /\ A. x e. (/) ( ( ( x g x ) ` ( ( Id ` (/) ) ` x ) ) = ( ( Id ` C ) ` ( f ` x ) ) /\ A. y e. (/) A. z e. (/) A. m e. ( x ( Hom ` (/) ) y ) A. n e. ( y ( Hom ` (/) ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` (/) ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` C ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) ) ) ) |
| 16 | f0bi | |- ( f : (/) --> ( Base ` C ) <-> f = (/) ) |
|
| 17 | ral0 | |- A. x e. (/) A. y e. (/) ( x g y ) : ( x ( Hom ` (/) ) y ) --> ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) |
|
| 18 | 5 | funcf2lem2 | |- ( g e. X_ z e. ( (/) X. (/) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` C ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` (/) ) ` z ) ) <-> ( g Fn ( (/) X. (/) ) /\ A. x e. (/) A. y e. (/) ( x g y ) : ( x ( Hom ` (/) ) y ) --> ( ( f ` x ) ( Hom ` C ) ( f ` y ) ) ) ) |
| 19 | 17 18 | mpbiran2 | |- ( g e. X_ z e. ( (/) X. (/) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` C ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` (/) ) ` z ) ) <-> g Fn ( (/) X. (/) ) ) |
| 20 | 0xp | |- ( (/) X. (/) ) = (/) |
|
| 21 | 20 | fneq2i | |- ( g Fn ( (/) X. (/) ) <-> g Fn (/) ) |
| 22 | fn0 | |- ( g Fn (/) <-> g = (/) ) |
|
| 23 | 19 21 22 | 3bitri | |- ( g e. X_ z e. ( (/) X. (/) ) ( ( ( f ` ( 1st ` z ) ) ( Hom ` C ) ( f ` ( 2nd ` z ) ) ) ^m ( ( Hom ` (/) ) ` z ) ) <-> g = (/) ) |
| 24 | ral0 | |- A. x e. (/) ( ( ( x g x ) ` ( ( Id ` (/) ) ` x ) ) = ( ( Id ` C ) ` ( f ` x ) ) /\ A. y e. (/) A. z e. (/) A. m e. ( x ( Hom ` (/) ) y ) A. n e. ( y ( Hom ` (/) ) z ) ( ( x g z ) ` ( n ( <. x , y >. ( comp ` (/) ) z ) m ) ) = ( ( ( y g z ) ` n ) ( <. ( f ` x ) , ( f ` y ) >. ( comp ` C ) ( f ` z ) ) ( ( x g y ) ` m ) ) ) |
|
| 25 | 15 16 23 24 | 0funclem | |- ( ph -> ( f ( (/) Func C ) g <-> ( f = (/) /\ g = (/) ) ) ) |
| 26 | brsnop | |- ( ( (/) e. _V /\ (/) e. _V ) -> ( f { <. (/) , (/) >. } g <-> ( f = (/) /\ g = (/) ) ) ) |
|
| 27 | 3 3 26 | mp2an | |- ( f { <. (/) , (/) >. } g <-> ( f = (/) /\ g = (/) ) ) |
| 28 | 25 27 | bitr4di | |- ( ph -> ( f ( (/) Func C ) g <-> f { <. (/) , (/) >. } g ) ) |
| 29 | 2 4 28 | eqbrrdiv | |- ( ph -> ( (/) Func C ) = { <. (/) , (/) >. } ) |