This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite sum of continuous complex function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumcncf.x | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) | |
| fsumcncf.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fsumcncf.cncf | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ ℂ ) ) | ||
| Assertion | fsumcncf | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumcncf.x | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) | |
| 2 | fsumcncf.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | fsumcncf.cncf | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 4 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 5 | 4 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 7 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝑋 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) | |
| 8 | 6 1 7 | syl2anc | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 9 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 10 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) | |
| 11 | 4 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 12 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 13 | 12 | restid | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
| 14 | 11 13 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
| 15 | 14 | eqcomi | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 16 | 4 10 15 | cncfcn | ⊢ ( ( 𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑋 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 17 | 1 9 16 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑋 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 19 | 3 18 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 20 | 4 8 2 19 | fsumcnf | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑋 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 21 | 20 17 | eleqtrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝑋 –cn→ ℂ ) ) |