This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The empty set is a continuous function. (Contributed by Glauco
Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Assertion |
0cnf |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f0 |
|
| 2 |
|
cnv0 |
|
| 3 |
2
|
imaeq1i |
|
| 4 |
|
0ima |
|
| 5 |
3 4
|
eqtri |
|
| 6 |
|
0ex |
|
| 7 |
6
|
snid |
|
| 8 |
5 7
|
eqeltri |
|
| 9 |
8
|
rgenw |
|
| 10 |
|
sn0topon |
|
| 11 |
|
iscn |
|
| 12 |
10 10 11
|
mp2an |
|
| 13 |
1 9 12
|
mpbir2an |
|