This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of 0cnALT which is shorter, but depends on ax-8 , ax-13 , ax-sep , ax-nul , ax-pow , ax-pr , ax-un , and every complex number axiom except ax-pre-mulgt0 and ax-pre-sup . (Contributed by NM, 19-Feb-2005) (Revised by Mario Carneiro, 27-May-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0cnALT2 | ⊢ 0 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | cnegex | ⊢ ( i ∈ ℂ → ∃ 𝑥 ∈ ℂ ( i + 𝑥 ) = 0 ) | |
| 3 | 1 2 | ax-mp | ⊢ ∃ 𝑥 ∈ ℂ ( i + 𝑥 ) = 0 |
| 4 | addcl | ⊢ ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i + 𝑥 ) ∈ ℂ ) | |
| 5 | 1 4 | mpan | ⊢ ( 𝑥 ∈ ℂ → ( i + 𝑥 ) ∈ ℂ ) |
| 6 | eleq1 | ⊢ ( ( i + 𝑥 ) = 0 → ( ( i + 𝑥 ) ∈ ℂ ↔ 0 ∈ ℂ ) ) | |
| 7 | 5 6 | syl5ibcom | ⊢ ( 𝑥 ∈ ℂ → ( ( i + 𝑥 ) = 0 → 0 ∈ ℂ ) ) |
| 8 | 7 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ℂ ( i + 𝑥 ) = 0 → 0 ∈ ℂ ) |
| 9 | 3 8 | ax-mp | ⊢ 0 ∈ ℂ |