This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential uniqueness of negatives. Theorem I.2 of Apostol p. 18. (Contributed by NM, 22-Nov-1994) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negeu | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ∃! 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnegex | ⊢ ( 𝐴 ∈ ℂ → ∃ 𝑦 ∈ ℂ ( 𝐴 + 𝑦 ) = 0 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ∃ 𝑦 ∈ ℂ ( 𝐴 + 𝑦 ) = 0 ) |
| 3 | simpl | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) → 𝑦 ∈ ℂ ) | |
| 4 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 5 | addcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑦 + 𝐵 ) ∈ ℂ ) | |
| 6 | 3 4 5 | syl2anr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) → ( 𝑦 + 𝐵 ) ∈ ℂ ) |
| 7 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ∧ 𝑥 ∈ ℂ ) → ( 𝐴 + 𝑦 ) = 0 ) | |
| 8 | 7 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 + 𝑦 ) + 𝐵 ) = ( 0 + 𝐵 ) ) |
| 9 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ∧ 𝑥 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 10 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ∧ 𝑥 ∈ ℂ ) → 𝑦 ∈ ℂ ) | |
| 11 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 12 | 9 10 11 | addassd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 + 𝑦 ) + 𝐵 ) = ( 𝐴 + ( 𝑦 + 𝐵 ) ) ) |
| 13 | 11 | addlidd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ∧ 𝑥 ∈ ℂ ) → ( 0 + 𝐵 ) = 𝐵 ) |
| 14 | 8 12 13 | 3eqtr3rd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ∧ 𝑥 ∈ ℂ ) → 𝐵 = ( 𝐴 + ( 𝑦 + 𝐵 ) ) ) |
| 15 | 14 | eqeq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 + 𝑥 ) = 𝐵 ↔ ( 𝐴 + 𝑥 ) = ( 𝐴 + ( 𝑦 + 𝐵 ) ) ) ) |
| 16 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 17 | 10 11 | addcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ∧ 𝑥 ∈ ℂ ) → ( 𝑦 + 𝐵 ) ∈ ℂ ) |
| 18 | 9 16 17 | addcand | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 + 𝑥 ) = ( 𝐴 + ( 𝑦 + 𝐵 ) ) ↔ 𝑥 = ( 𝑦 + 𝐵 ) ) ) |
| 19 | 15 18 | bitrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 + 𝑥 ) = 𝐵 ↔ 𝑥 = ( 𝑦 + 𝐵 ) ) ) |
| 20 | 19 | ralrimiva | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) → ∀ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 𝐵 ↔ 𝑥 = ( 𝑦 + 𝐵 ) ) ) |
| 21 | reu6i | ⊢ ( ( ( 𝑦 + 𝐵 ) ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 𝐴 + 𝑥 ) = 𝐵 ↔ 𝑥 = ( 𝑦 + 𝐵 ) ) ) → ∃! 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 𝐵 ) | |
| 22 | 6 20 21 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝑦 ∈ ℂ ∧ ( 𝐴 + 𝑦 ) = 0 ) ) → ∃! 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 𝐵 ) |
| 23 | 2 22 | rexlimddv | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ∃! 𝑥 ∈ ℂ ( 𝐴 + 𝑥 ) = 𝐵 ) |