This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of 0cnALT which is shorter, but depends on ax-8 , ax-13 , ax-sep , ax-nul , ax-pow , ax-pr , ax-un , and every complex number axiom except ax-pre-mulgt0 and ax-pre-sup . (Contributed by NM, 19-Feb-2005) (Revised by Mario Carneiro, 27-May-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0cnALT2 | |- 0 e. CC |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | cnegex | |- ( _i e. CC -> E. x e. CC ( _i + x ) = 0 ) |
|
| 3 | 1 2 | ax-mp | |- E. x e. CC ( _i + x ) = 0 |
| 4 | addcl | |- ( ( _i e. CC /\ x e. CC ) -> ( _i + x ) e. CC ) |
|
| 5 | 1 4 | mpan | |- ( x e. CC -> ( _i + x ) e. CC ) |
| 6 | eleq1 | |- ( ( _i + x ) = 0 -> ( ( _i + x ) e. CC <-> 0 e. CC ) ) |
|
| 7 | 5 6 | syl5ibcom | |- ( x e. CC -> ( ( _i + x ) = 0 -> 0 e. CC ) ) |
| 8 | 7 | rexlimiv | |- ( E. x e. CC ( _i + x ) = 0 -> 0 e. CC ) |
| 9 | 3 8 | ax-mp | |- 0 e. CC |