This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of 0cn which does not reference ax-1cn . (Contributed by NM, 19-Feb-2005) (Revised by Mario Carneiro, 27-May-2016) Reduce dependencies on axioms. (Revised by Steven Nguyen, 7-Jan-2022) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0cnALT | ⊢ 0 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | cnre | ⊢ ( i ∈ ℂ → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ i = ( 𝑥 + ( i · 𝑦 ) ) ) | |
| 3 | ax-rnegex | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℝ ( 𝑥 + 𝑧 ) = 0 ) | |
| 4 | readdcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑥 + 𝑧 ) ∈ ℝ ) | |
| 5 | eleq1 | ⊢ ( ( 𝑥 + 𝑧 ) = 0 → ( ( 𝑥 + 𝑧 ) ∈ ℝ ↔ 0 ∈ ℝ ) ) | |
| 6 | 4 5 | syl5ibcom | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑥 + 𝑧 ) = 0 → 0 ∈ ℝ ) ) |
| 7 | 6 | rexlimdva | ⊢ ( 𝑥 ∈ ℝ → ( ∃ 𝑧 ∈ ℝ ( 𝑥 + 𝑧 ) = 0 → 0 ∈ ℝ ) ) |
| 8 | 3 7 | mpd | ⊢ ( 𝑥 ∈ ℝ → 0 ∈ ℝ ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ ∃ 𝑦 ∈ ℝ i = ( 𝑥 + ( i · 𝑦 ) ) ) → 0 ∈ ℝ ) |
| 10 | 9 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ i = ( 𝑥 + ( i · 𝑦 ) ) → 0 ∈ ℝ ) |
| 11 | 1 2 10 | mp2b | ⊢ 0 ∈ ℝ |
| 12 | 11 | recni | ⊢ 0 ∈ ℂ |