This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019) (Proof shortened by SN, 23-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0ring.b | ||
| 0ring.0 | |||
| 0ring01eq.1 | |||
| Assertion | 01eq0ring |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ring.b | ||
| 2 | 0ring.0 | ||
| 3 | 0ring01eq.1 | ||
| 4 | eqcom | ||
| 5 | 1 2 | ring0cl | |
| 6 | 5 | ne0d | |
| 7 | 5 | adantr | |
| 8 | 1 3 2 | ring1eq0 | |
| 9 | 7 8 | mpd3an3 | |
| 10 | 9 | impancom | |
| 11 | 10 | ralrimiv | |
| 12 | eqsn | ||
| 13 | 12 | biimpar | |
| 14 | 6 11 13 | syl2an2r | |
| 15 | 4 14 | sylan2b |