This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem biimpac

Description: Importation inference from a logical equivalence. (Contributed by NM, 3-May-1994)

Ref Expression
Hypothesis biimpa.1 φ ψ χ
Assertion biimpac ψ φ χ

Proof

Step Hyp Ref Expression
1 biimpa.1 φ ψ χ
2 1 biimpcd ψ φ χ
3 2 imp ψ φ χ