This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
eqsbc1
Metamath Proof Explorer
Description: Substitution for the left-hand side in an equality. Class version of
eqsb1 . (Contributed by Andrew Salmon , 29-Jun-2011) Avoid ax-13 .
(Revised by Wolf Lammen , 29-Apr-2023)
Ref
Expression
Assertion
eqsbc1
⊢ A ∈ V → [ ˙ A / x ] ˙ x = B ↔ A = B
Proof
Step
Hyp
Ref
Expression
1
dfsbcq
⊢ y = A → [ ˙ y / x ] ˙ x = B ↔ [ ˙ A / x ] ˙ x = B
2
eqeq1
⊢ y = A → y = B ↔ A = B
3
sbsbc
⊢ y x x = B ↔ [ ˙ y / x ] ˙ x = B
4
eqsb1
⊢ y x x = B ↔ y = B
5
3 4
bitr3i
⊢ [ ˙ y / x ] ˙ x = B ↔ y = B
6
1 2 5
vtoclbg
⊢ A ∈ V → [ ˙ A / x ] ˙ x = B ↔ A = B