This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton is finite. (Contributed by NM, 4-Nov-2002) (Proof shortened by BTernaryTau, 13-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snfi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn | ||
| 2 | ensn1g | ||
| 3 | breq2 | ||
| 4 | 3 | rspcev | |
| 5 | 1 2 4 | sylancr | |
| 6 | isfi | ||
| 7 | 5 6 | sylibr | |
| 8 | snprc | ||
| 9 | 0fi | ||
| 10 | eleq1 | ||
| 11 | 9 10 | mpbiri | |
| 12 | 8 11 | sylbi | |
| 13 | 7 12 | pm2.61i |