This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sylan2b

Description: A syllogism inference. (Contributed by NM, 21-Apr-1994)

Ref Expression
Hypotheses sylan2b.1 φ χ
sylan2b.2 ψ χ θ
Assertion sylan2b ψ φ θ

Proof

Step Hyp Ref Expression
1 sylan2b.1 φ χ
2 sylan2b.2 ψ χ θ
3 1 biimpi φ χ
4 3 2 sylan2 ψ φ θ