This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015)
|
|
Ref |
Expression |
|
Hypotheses |
mhmf.b |
|
|
|
mhmf.c |
|
|
Assertion |
mhmf |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhmf.b |
|
| 2 |
|
mhmf.c |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
1 2 3 4 5 6
|
ismhm |
|
| 8 |
7
|
simprbi |
|
| 9 |
8
|
simp1d |
|