This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsummhm
Metamath Proof Explorer
Description: Apply a group homomorphism to a group sum. (Contributed by Mario
Carneiro , 15-Dec-2014) (Revised by Mario Carneiro , 24-Apr-2016)
(Revised by AV , 6-Jun-2019)
Ref
Expression
Hypotheses
gsummhm.b
⊢ B = Base G
gsummhm.z
⊢ 0 ˙ = 0 G
gsummhm.g
⊢ φ → G ∈ CMnd
gsummhm.h
⊢ φ → H ∈ Mnd
gsummhm.a
⊢ φ → A ∈ V
gsummhm.k
⊢ φ → K ∈ G MndHom H
gsummhm.f
⊢ φ → F : A ⟶ B
gsummhm.w
⊢ φ → finSupp 0 ˙ ⁡ F
Assertion
gsummhm
⊢ φ → ∑ H K ∘ F = K ⁡ ∑ G F
Proof
Step
Hyp
Ref
Expression
1
gsummhm.b
⊢ B = Base G
2
gsummhm.z
⊢ 0 ˙ = 0 G
3
gsummhm.g
⊢ φ → G ∈ CMnd
4
gsummhm.h
⊢ φ → H ∈ Mnd
5
gsummhm.a
⊢ φ → A ∈ V
6
gsummhm.k
⊢ φ → K ∈ G MndHom H
7
gsummhm.f
⊢ φ → F : A ⟶ B
8
gsummhm.w
⊢ φ → finSupp 0 ˙ ⁡ F
9
eqid
⊢ Cntz ⁡ G = Cntz ⁡ G
10
cmnmnd
⊢ G ∈ CMnd → G ∈ Mnd
11
3 10
syl
⊢ φ → G ∈ Mnd
12
1 9 3 7
cntzcmnf
⊢ φ → ran ⁡ F ⊆ Cntz ⁡ G ⁡ ran ⁡ F
13
1 9 11 4 5 6 7 12 2 8
gsumzmhm
⊢ φ → ∑ H K ∘ F = K ⁡ ∑ G F