This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class membership
eleq1d
Metamath Proof Explorer
Description: Deduction from equality to equivalence of membership. (Contributed by NM , 21-Jun-1993) Allow shortening of eleq1 . (Revised by Wolf
Lammen , 20-Nov-2019)
Ref
Expression
Hypothesis
eleq1d.1
⊢ φ → A = B
Assertion
eleq1d
⊢ φ → A ∈ C ↔ B ∈ C
Proof
Step
Hyp
Ref
Expression
1
eleq1d.1
⊢ φ → A = B
2
1
eqeq2d
⊢ φ → x = A ↔ x = B
3
2
anbi1d
⊢ φ → x = A ∧ x ∈ C ↔ x = B ∧ x ∈ C
4
3
exbidv
⊢ φ → ∃ x x = A ∧ x ∈ C ↔ ∃ x x = B ∧ x ∈ C
5
dfclel
⊢ A ∈ C ↔ ∃ x x = A ∧ x ∈ C
6
dfclel
⊢ B ∈ C ↔ ∃ x x = B ∧ x ∈ C
7
4 5 6
3bitr4g
⊢ φ → A ∈ C ↔ B ∈ C