This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 4-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvcl.b | ||
| grpinvcl.n | |||
| Assertion | grpinvcl |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b | ||
| 2 | grpinvcl.n | ||
| 3 | 1 2 | grpinvf | |
| 4 | 3 | ffvelcdmda |