This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
elrab
Metamath Proof Explorer
Description: Membership in a restricted class abstraction, using implicit
substitution. (Contributed by NM , 21-May-1999) Remove dependency on
ax-13 . (Revised by Steven Nguyen , 23-Nov-2022)
Ref
Expression
Hypothesis
elrab.1
⊢ x = A → φ ↔ ψ
Assertion
elrab
⊢ A ∈ x ∈ B | φ ↔ A ∈ B ∧ ψ
Proof
Step
Hyp
Ref
Expression
1
elrab.1
⊢ x = A → φ ↔ ψ
2
elex
⊢ A ∈ x ∈ B | φ → A ∈ V
3
elex
⊢ A ∈ B → A ∈ V
4
3
adantr
⊢ A ∈ B ∧ ψ → A ∈ V
5
eleq1
⊢ x = A → x ∈ B ↔ A ∈ B
6
5 1
anbi12d
⊢ x = A → x ∈ B ∧ φ ↔ A ∈ B ∧ ψ
7
df-rab
⊢ x ∈ B | φ = x | x ∈ B ∧ φ
8
6 7
elab2g
⊢ A ∈ V → A ∈ x ∈ B | φ ↔ A ∈ B ∧ ψ
9
2 4 8
pm5.21nii
⊢ A ∈ x ∈ B | φ ↔ A ∈ B ∧ ψ