This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem biimpar

Description: Importation inference from a logical equivalence. (Contributed by NM, 3-May-1994)

Ref Expression
Hypothesis biimpa.1 φ ψ χ
Assertion biimpar φ χ ψ

Proof

Step Hyp Ref Expression
1 biimpa.1 φ ψ χ
2 1 biimprd φ χ ψ
3 2 imp φ χ ψ