This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of Z/nZ structure. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znbas.s | |- S = ( RSpan ` ZZring ) |
|
| znbas.y | |- Y = ( Z/nZ ` N ) |
||
| znbas.r | |- R = ( ZZring ~QG ( S ` { N } ) ) |
||
| Assertion | znbas | |- ( N e. NN0 -> ( ZZ /. R ) = ( Base ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znbas.s | |- S = ( RSpan ` ZZring ) |
|
| 2 | znbas.y | |- Y = ( Z/nZ ` N ) |
|
| 3 | znbas.r | |- R = ( ZZring ~QG ( S ` { N } ) ) |
|
| 4 | eqidd | |- ( N e. NN0 -> ( ZZring /s R ) = ( ZZring /s R ) ) |
|
| 5 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 6 | 5 | a1i | |- ( N e. NN0 -> ZZ = ( Base ` ZZring ) ) |
| 7 | 3 | ovexi | |- R e. _V |
| 8 | 7 | a1i | |- ( N e. NN0 -> R e. _V ) |
| 9 | zringring | |- ZZring e. Ring |
|
| 10 | 9 | a1i | |- ( N e. NN0 -> ZZring e. Ring ) |
| 11 | 4 6 8 10 | qusbas | |- ( N e. NN0 -> ( ZZ /. R ) = ( Base ` ( ZZring /s R ) ) ) |
| 12 | 3 | oveq2i | |- ( ZZring /s R ) = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
| 13 | 1 12 2 | znbas2 | |- ( N e. NN0 -> ( Base ` ( ZZring /s R ) ) = ( Base ` Y ) ) |
| 14 | 11 13 | eqtrd | |- ( N e. NN0 -> ( ZZ /. R ) = ( Base ` Y ) ) |