This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ ring homomorphism of Z/nZ is inherited from the quotient ring it is based on. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znval2.s | |- S = ( RSpan ` ZZring ) |
|
| znval2.u | |- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
||
| znval2.y | |- Y = ( Z/nZ ` N ) |
||
| Assertion | znzrh | |- ( N e. NN0 -> ( ZRHom ` U ) = ( ZRHom ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval2.s | |- S = ( RSpan ` ZZring ) |
|
| 2 | znval2.u | |- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
|
| 3 | znval2.y | |- Y = ( Z/nZ ` N ) |
|
| 4 | eqidd | |- ( N e. NN0 -> ( Base ` U ) = ( Base ` U ) ) |
|
| 5 | 1 2 3 | znbas2 | |- ( N e. NN0 -> ( Base ` U ) = ( Base ` Y ) ) |
| 6 | 1 2 3 | znadd | |- ( N e. NN0 -> ( +g ` U ) = ( +g ` Y ) ) |
| 7 | 6 | oveqdr | |- ( ( N e. NN0 /\ ( x e. ( Base ` U ) /\ y e. ( Base ` U ) ) ) -> ( x ( +g ` U ) y ) = ( x ( +g ` Y ) y ) ) |
| 8 | 1 2 3 | znmul | |- ( N e. NN0 -> ( .r ` U ) = ( .r ` Y ) ) |
| 9 | 8 | oveqdr | |- ( ( N e. NN0 /\ ( x e. ( Base ` U ) /\ y e. ( Base ` U ) ) ) -> ( x ( .r ` U ) y ) = ( x ( .r ` Y ) y ) ) |
| 10 | 4 5 7 9 | zrhpropd | |- ( N e. NN0 -> ( ZRHom ` U ) = ( ZRHom ` Y ) ) |