This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znzrh2.s | |- S = ( RSpan ` ZZring ) |
|
| znzrh2.r | |- .~ = ( ZZring ~QG ( S ` { N } ) ) |
||
| znzrh2.y | |- Y = ( Z/nZ ` N ) |
||
| znzrh2.2 | |- L = ( ZRHom ` Y ) |
||
| Assertion | znzrhval | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( L ` A ) = [ A ] .~ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znzrh2.s | |- S = ( RSpan ` ZZring ) |
|
| 2 | znzrh2.r | |- .~ = ( ZZring ~QG ( S ` { N } ) ) |
|
| 3 | znzrh2.y | |- Y = ( Z/nZ ` N ) |
|
| 4 | znzrh2.2 | |- L = ( ZRHom ` Y ) |
|
| 5 | 1 2 3 4 | znzrh2 | |- ( N e. NN0 -> L = ( x e. ZZ |-> [ x ] .~ ) ) |
| 6 | 5 | fveq1d | |- ( N e. NN0 -> ( L ` A ) = ( ( x e. ZZ |-> [ x ] .~ ) ` A ) ) |
| 7 | eceq1 | |- ( x = A -> [ x ] .~ = [ A ] .~ ) |
|
| 8 | eqid | |- ( x e. ZZ |-> [ x ] .~ ) = ( x e. ZZ |-> [ x ] .~ ) |
|
| 9 | 2 | ovexi | |- .~ e. _V |
| 10 | ecexg | |- ( .~ e. _V -> [ A ] .~ e. _V ) |
|
| 11 | 9 10 | ax-mp | |- [ A ] .~ e. _V |
| 12 | 7 8 11 | fvmpt | |- ( A e. ZZ -> ( ( x e. ZZ |-> [ x ] .~ ) ` A ) = [ A ] .~ ) |
| 13 | 6 12 | sylan9eq | |- ( ( N e. NN0 /\ A e. ZZ ) -> ( L ` A ) = [ A ] .~ ) |