This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended nonnegative integer is an extended nonnegative real. (Contributed by AV, 10-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnn0xrge0 | |- ( A e. NN0* -> A e. ( 0 [,] +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 | |- ( A e. NN0* <-> ( A e. NN0 \/ A = +oo ) ) |
|
| 2 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 3 | 2 | rexrd | |- ( A e. NN0 -> A e. RR* ) |
| 4 | nn0ge0 | |- ( A e. NN0 -> 0 <_ A ) |
|
| 5 | elxrge0 | |- ( A e. ( 0 [,] +oo ) <-> ( A e. RR* /\ 0 <_ A ) ) |
|
| 6 | 3 4 5 | sylanbrc | |- ( A e. NN0 -> A e. ( 0 [,] +oo ) ) |
| 7 | 0xr | |- 0 e. RR* |
|
| 8 | pnfxr | |- +oo e. RR* |
|
| 9 | 0lepnf | |- 0 <_ +oo |
|
| 10 | ubicc2 | |- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> +oo e. ( 0 [,] +oo ) ) |
|
| 11 | 7 8 9 10 | mp3an | |- +oo e. ( 0 [,] +oo ) |
| 12 | eleq1 | |- ( A = +oo -> ( A e. ( 0 [,] +oo ) <-> +oo e. ( 0 [,] +oo ) ) ) |
|
| 13 | 11 12 | mpbiri | |- ( A = +oo -> A e. ( 0 [,] +oo ) ) |
| 14 | 6 13 | jaoi | |- ( ( A e. NN0 \/ A = +oo ) -> A e. ( 0 [,] +oo ) ) |
| 15 | 1 14 | sylbi | |- ( A e. NN0* -> A e. ( 0 [,] +oo ) ) |