This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addlelt | |- ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> ( ( M + A ) <_ N -> M < N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgt0 | |- ( A e. RR+ -> 0 < A ) |
|
| 2 | 1 | 3ad2ant3 | |- ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> 0 < A ) |
| 3 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 4 | 3 | 3ad2ant3 | |- ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> A e. RR ) |
| 5 | simp1 | |- ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> M e. RR ) |
|
| 6 | 4 5 | ltaddposd | |- ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> ( 0 < A <-> M < ( M + A ) ) ) |
| 7 | 2 6 | mpbid | |- ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> M < ( M + A ) ) |
| 8 | simpl | |- ( ( M e. RR /\ A e. RR+ ) -> M e. RR ) |
|
| 9 | 3 | adantl | |- ( ( M e. RR /\ A e. RR+ ) -> A e. RR ) |
| 10 | 8 9 | readdcld | |- ( ( M e. RR /\ A e. RR+ ) -> ( M + A ) e. RR ) |
| 11 | 10 | 3adant2 | |- ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> ( M + A ) e. RR ) |
| 12 | simp2 | |- ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> N e. RR ) |
|
| 13 | ltletr | |- ( ( M e. RR /\ ( M + A ) e. RR /\ N e. RR ) -> ( ( M < ( M + A ) /\ ( M + A ) <_ N ) -> M < N ) ) |
|
| 14 | 5 11 12 13 | syl3anc | |- ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> ( ( M < ( M + A ) /\ ( M + A ) <_ N ) -> M < N ) ) |
| 15 | 7 14 | mpand | |- ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> ( ( M + A ) <_ N -> M < N ) ) |