This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of upper sets of integers is a filter base on ZZ , which corresponds to convergence of sequences on ZZ . (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfbas | |- ran ZZ>= e. ( fBas ` ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf | |- ZZ>= : ZZ --> ~P ZZ |
|
| 2 | frn | |- ( ZZ>= : ZZ --> ~P ZZ -> ran ZZ>= C_ ~P ZZ ) |
|
| 3 | 1 2 | ax-mp | |- ran ZZ>= C_ ~P ZZ |
| 4 | ffn | |- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
|
| 5 | 1 4 | ax-mp | |- ZZ>= Fn ZZ |
| 6 | 1z | |- 1 e. ZZ |
|
| 7 | fnfvelrn | |- ( ( ZZ>= Fn ZZ /\ 1 e. ZZ ) -> ( ZZ>= ` 1 ) e. ran ZZ>= ) |
|
| 8 | 5 6 7 | mp2an | |- ( ZZ>= ` 1 ) e. ran ZZ>= |
| 9 | 8 | ne0ii | |- ran ZZ>= =/= (/) |
| 10 | uzid | |- ( x e. ZZ -> x e. ( ZZ>= ` x ) ) |
|
| 11 | n0i | |- ( x e. ( ZZ>= ` x ) -> -. ( ZZ>= ` x ) = (/) ) |
|
| 12 | 10 11 | syl | |- ( x e. ZZ -> -. ( ZZ>= ` x ) = (/) ) |
| 13 | 12 | nrex | |- -. E. x e. ZZ ( ZZ>= ` x ) = (/) |
| 14 | fvelrnb | |- ( ZZ>= Fn ZZ -> ( (/) e. ran ZZ>= <-> E. x e. ZZ ( ZZ>= ` x ) = (/) ) ) |
|
| 15 | 5 14 | ax-mp | |- ( (/) e. ran ZZ>= <-> E. x e. ZZ ( ZZ>= ` x ) = (/) ) |
| 16 | 13 15 | mtbir | |- -. (/) e. ran ZZ>= |
| 17 | 16 | nelir | |- (/) e/ ran ZZ>= |
| 18 | uzin2 | |- ( ( x e. ran ZZ>= /\ y e. ran ZZ>= ) -> ( x i^i y ) e. ran ZZ>= ) |
|
| 19 | vex | |- x e. _V |
|
| 20 | 19 | inex1 | |- ( x i^i y ) e. _V |
| 21 | 20 | pwid | |- ( x i^i y ) e. ~P ( x i^i y ) |
| 22 | inelcm | |- ( ( ( x i^i y ) e. ran ZZ>= /\ ( x i^i y ) e. ~P ( x i^i y ) ) -> ( ran ZZ>= i^i ~P ( x i^i y ) ) =/= (/) ) |
|
| 23 | 18 21 22 | sylancl | |- ( ( x e. ran ZZ>= /\ y e. ran ZZ>= ) -> ( ran ZZ>= i^i ~P ( x i^i y ) ) =/= (/) ) |
| 24 | 23 | rgen2 | |- A. x e. ran ZZ>= A. y e. ran ZZ>= ( ran ZZ>= i^i ~P ( x i^i y ) ) =/= (/) |
| 25 | 9 17 24 | 3pm3.2i | |- ( ran ZZ>= =/= (/) /\ (/) e/ ran ZZ>= /\ A. x e. ran ZZ>= A. y e. ran ZZ>= ( ran ZZ>= i^i ~P ( x i^i y ) ) =/= (/) ) |
| 26 | zex | |- ZZ e. _V |
|
| 27 | isfbas | |- ( ZZ e. _V -> ( ran ZZ>= e. ( fBas ` ZZ ) <-> ( ran ZZ>= C_ ~P ZZ /\ ( ran ZZ>= =/= (/) /\ (/) e/ ran ZZ>= /\ A. x e. ran ZZ>= A. y e. ran ZZ>= ( ran ZZ>= i^i ~P ( x i^i y ) ) =/= (/) ) ) ) ) |
|
| 28 | 26 27 | ax-mp | |- ( ran ZZ>= e. ( fBas ` ZZ ) <-> ( ran ZZ>= C_ ~P ZZ /\ ( ran ZZ>= =/= (/) /\ (/) e/ ran ZZ>= /\ A. x e. ran ZZ>= A. y e. ran ZZ>= ( ran ZZ>= i^i ~P ( x i^i y ) ) =/= (/) ) ) ) |
| 29 | 3 25 28 | mpbir2an | |- ran ZZ>= e. ( fBas ` ZZ ) |