This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: nn0gcdsq extended to integers by symmetry. (Contributed by Stefan O'Rear, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zgcdsq | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdabs | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( abs ` A ) gcd ( abs ` B ) ) = ( A gcd B ) ) |
|
| 2 | 1 | eqcomd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( ( abs ` A ) gcd ( abs ` B ) ) ) |
| 3 | 2 | oveq1d | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) ^ 2 ) = ( ( ( abs ` A ) gcd ( abs ` B ) ) ^ 2 ) ) |
| 4 | nn0abscl | |- ( A e. ZZ -> ( abs ` A ) e. NN0 ) |
|
| 5 | nn0abscl | |- ( B e. ZZ -> ( abs ` B ) e. NN0 ) |
|
| 6 | nn0gcdsq | |- ( ( ( abs ` A ) e. NN0 /\ ( abs ` B ) e. NN0 ) -> ( ( ( abs ` A ) gcd ( abs ` B ) ) ^ 2 ) = ( ( ( abs ` A ) ^ 2 ) gcd ( ( abs ` B ) ^ 2 ) ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( abs ` A ) gcd ( abs ` B ) ) ^ 2 ) = ( ( ( abs ` A ) ^ 2 ) gcd ( ( abs ` B ) ^ 2 ) ) ) |
| 8 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 9 | 8 | adantr | |- ( ( A e. ZZ /\ B e. ZZ ) -> A e. RR ) |
| 10 | absresq | |- ( A e. RR -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) |
|
| 11 | 9 10 | syl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) |
| 12 | zre | |- ( B e. ZZ -> B e. RR ) |
|
| 13 | 12 | adantl | |- ( ( A e. ZZ /\ B e. ZZ ) -> B e. RR ) |
| 14 | absresq | |- ( B e. RR -> ( ( abs ` B ) ^ 2 ) = ( B ^ 2 ) ) |
|
| 15 | 13 14 | syl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( abs ` B ) ^ 2 ) = ( B ^ 2 ) ) |
| 16 | 11 15 | oveq12d | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( abs ` A ) ^ 2 ) gcd ( ( abs ` B ) ^ 2 ) ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |
| 17 | 3 7 16 | 3eqtrd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) ^ 2 ) = ( ( A ^ 2 ) gcd ( B ^ 2 ) ) ) |