This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is even iff its square is even. (Contributed by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zesq | |- ( N e. ZZ -> ( ( N / 2 ) e. ZZ <-> ( ( N ^ 2 ) / 2 ) e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 2 | sqval | |- ( N e. CC -> ( N ^ 2 ) = ( N x. N ) ) |
|
| 3 | 1 2 | syl | |- ( N e. ZZ -> ( N ^ 2 ) = ( N x. N ) ) |
| 4 | 3 | oveq1d | |- ( N e. ZZ -> ( ( N ^ 2 ) / 2 ) = ( ( N x. N ) / 2 ) ) |
| 5 | 2cnd | |- ( N e. ZZ -> 2 e. CC ) |
|
| 6 | 2ne0 | |- 2 =/= 0 |
|
| 7 | 6 | a1i | |- ( N e. ZZ -> 2 =/= 0 ) |
| 8 | 1 1 5 7 | divassd | |- ( N e. ZZ -> ( ( N x. N ) / 2 ) = ( N x. ( N / 2 ) ) ) |
| 9 | 4 8 | eqtrd | |- ( N e. ZZ -> ( ( N ^ 2 ) / 2 ) = ( N x. ( N / 2 ) ) ) |
| 10 | 9 | adantr | |- ( ( N e. ZZ /\ ( N / 2 ) e. ZZ ) -> ( ( N ^ 2 ) / 2 ) = ( N x. ( N / 2 ) ) ) |
| 11 | zmulcl | |- ( ( N e. ZZ /\ ( N / 2 ) e. ZZ ) -> ( N x. ( N / 2 ) ) e. ZZ ) |
|
| 12 | 10 11 | eqeltrd | |- ( ( N e. ZZ /\ ( N / 2 ) e. ZZ ) -> ( ( N ^ 2 ) / 2 ) e. ZZ ) |
| 13 | 1 | adantr | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> N e. CC ) |
| 14 | sqcl | |- ( N e. CC -> ( N ^ 2 ) e. CC ) |
|
| 15 | 13 14 | syl | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( N ^ 2 ) e. CC ) |
| 16 | peano2cn | |- ( ( N ^ 2 ) e. CC -> ( ( N ^ 2 ) + 1 ) e. CC ) |
|
| 17 | 15 16 | syl | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( N ^ 2 ) + 1 ) e. CC ) |
| 18 | 17 | halfcld | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( ( N ^ 2 ) + 1 ) / 2 ) e. CC ) |
| 19 | 18 13 | pncand | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( ( ( ( N ^ 2 ) + 1 ) / 2 ) + N ) - N ) = ( ( ( N ^ 2 ) + 1 ) / 2 ) ) |
| 20 | binom21 | |- ( N e. CC -> ( ( N + 1 ) ^ 2 ) = ( ( ( N ^ 2 ) + ( 2 x. N ) ) + 1 ) ) |
|
| 21 | 13 20 | syl | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( N + 1 ) ^ 2 ) = ( ( ( N ^ 2 ) + ( 2 x. N ) ) + 1 ) ) |
| 22 | peano2cn | |- ( N e. CC -> ( N + 1 ) e. CC ) |
|
| 23 | 13 22 | syl | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( N + 1 ) e. CC ) |
| 24 | sqval | |- ( ( N + 1 ) e. CC -> ( ( N + 1 ) ^ 2 ) = ( ( N + 1 ) x. ( N + 1 ) ) ) |
|
| 25 | 23 24 | syl | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( N + 1 ) ^ 2 ) = ( ( N + 1 ) x. ( N + 1 ) ) ) |
| 26 | 2cn | |- 2 e. CC |
|
| 27 | mulcl | |- ( ( 2 e. CC /\ N e. CC ) -> ( 2 x. N ) e. CC ) |
|
| 28 | 26 13 27 | sylancr | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( 2 x. N ) e. CC ) |
| 29 | 1cnd | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> 1 e. CC ) |
|
| 30 | 15 28 29 | add32d | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( ( N ^ 2 ) + ( 2 x. N ) ) + 1 ) = ( ( ( N ^ 2 ) + 1 ) + ( 2 x. N ) ) ) |
| 31 | 21 25 30 | 3eqtr3d | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( N + 1 ) x. ( N + 1 ) ) = ( ( ( N ^ 2 ) + 1 ) + ( 2 x. N ) ) ) |
| 32 | 31 | oveq1d | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( ( N + 1 ) x. ( N + 1 ) ) / 2 ) = ( ( ( ( N ^ 2 ) + 1 ) + ( 2 x. N ) ) / 2 ) ) |
| 33 | 2cnd | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> 2 e. CC ) |
|
| 34 | 6 | a1i | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> 2 =/= 0 ) |
| 35 | 23 23 33 34 | divassd | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( ( N + 1 ) x. ( N + 1 ) ) / 2 ) = ( ( N + 1 ) x. ( ( N + 1 ) / 2 ) ) ) |
| 36 | 17 28 33 34 | divdird | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( ( ( N ^ 2 ) + 1 ) + ( 2 x. N ) ) / 2 ) = ( ( ( ( N ^ 2 ) + 1 ) / 2 ) + ( ( 2 x. N ) / 2 ) ) ) |
| 37 | 13 33 34 | divcan3d | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( 2 x. N ) / 2 ) = N ) |
| 38 | 37 | oveq2d | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( ( ( N ^ 2 ) + 1 ) / 2 ) + ( ( 2 x. N ) / 2 ) ) = ( ( ( ( N ^ 2 ) + 1 ) / 2 ) + N ) ) |
| 39 | 36 38 | eqtrd | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( ( ( N ^ 2 ) + 1 ) + ( 2 x. N ) ) / 2 ) = ( ( ( ( N ^ 2 ) + 1 ) / 2 ) + N ) ) |
| 40 | 32 35 39 | 3eqtr3d | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( N + 1 ) x. ( ( N + 1 ) / 2 ) ) = ( ( ( ( N ^ 2 ) + 1 ) / 2 ) + N ) ) |
| 41 | peano2z | |- ( N e. ZZ -> ( N + 1 ) e. ZZ ) |
|
| 42 | zmulcl | |- ( ( ( N + 1 ) e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( N + 1 ) x. ( ( N + 1 ) / 2 ) ) e. ZZ ) |
|
| 43 | 41 42 | sylan | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( N + 1 ) x. ( ( N + 1 ) / 2 ) ) e. ZZ ) |
| 44 | 40 43 | eqeltrrd | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( ( ( N ^ 2 ) + 1 ) / 2 ) + N ) e. ZZ ) |
| 45 | simpl | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> N e. ZZ ) |
|
| 46 | 44 45 | zsubcld | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( ( ( ( N ^ 2 ) + 1 ) / 2 ) + N ) - N ) e. ZZ ) |
| 47 | 19 46 | eqeltrrd | |- ( ( N e. ZZ /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( ( N ^ 2 ) + 1 ) / 2 ) e. ZZ ) |
| 48 | 47 | ex | |- ( N e. ZZ -> ( ( ( N + 1 ) / 2 ) e. ZZ -> ( ( ( N ^ 2 ) + 1 ) / 2 ) e. ZZ ) ) |
| 49 | 48 | con3d | |- ( N e. ZZ -> ( -. ( ( ( N ^ 2 ) + 1 ) / 2 ) e. ZZ -> -. ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 50 | zsqcl | |- ( N e. ZZ -> ( N ^ 2 ) e. ZZ ) |
|
| 51 | zeo2 | |- ( ( N ^ 2 ) e. ZZ -> ( ( ( N ^ 2 ) / 2 ) e. ZZ <-> -. ( ( ( N ^ 2 ) + 1 ) / 2 ) e. ZZ ) ) |
|
| 52 | 50 51 | syl | |- ( N e. ZZ -> ( ( ( N ^ 2 ) / 2 ) e. ZZ <-> -. ( ( ( N ^ 2 ) + 1 ) / 2 ) e. ZZ ) ) |
| 53 | zeo2 | |- ( N e. ZZ -> ( ( N / 2 ) e. ZZ <-> -. ( ( N + 1 ) / 2 ) e. ZZ ) ) |
|
| 54 | 49 52 53 | 3imtr4d | |- ( N e. ZZ -> ( ( ( N ^ 2 ) / 2 ) e. ZZ -> ( N / 2 ) e. ZZ ) ) |
| 55 | 54 | imp | |- ( ( N e. ZZ /\ ( ( N ^ 2 ) / 2 ) e. ZZ ) -> ( N / 2 ) e. ZZ ) |
| 56 | 12 55 | impbida | |- ( N e. ZZ -> ( ( N / 2 ) e. ZZ <-> ( ( N ^ 2 ) / 2 ) e. ZZ ) ) |