This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for initopropdlem , termopropdlem , and zeroopropdlem . (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initopropdlemlem.1 | |- F Fn X |
|
| initopropdlemlem.2 | |- ( ph -> -. A e. Y ) |
||
| initopropdlemlem.3 | |- X C_ Y |
||
| initopropdlemlem.4 | |- ( ( ph /\ B e. X ) -> ( F ` B ) = (/) ) |
||
| Assertion | initopropdlemlem | |- ( ph -> ( F ` A ) = ( F ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initopropdlemlem.1 | |- F Fn X |
|
| 2 | initopropdlemlem.2 | |- ( ph -> -. A e. Y ) |
|
| 3 | initopropdlemlem.3 | |- X C_ Y |
|
| 4 | initopropdlemlem.4 | |- ( ( ph /\ B e. X ) -> ( F ` B ) = (/) ) |
|
| 5 | 3 | sseli | |- ( A e. X -> A e. Y ) |
| 6 | 2 5 | nsyl | |- ( ph -> -. A e. X ) |
| 7 | 1 | fndmi | |- dom F = X |
| 8 | 7 | eleq2i | |- ( A e. dom F <-> A e. X ) |
| 9 | ndmfv | |- ( -. A e. dom F -> ( F ` A ) = (/) ) |
|
| 10 | 8 9 | sylnbir | |- ( -. A e. X -> ( F ` A ) = (/) ) |
| 11 | 6 10 | syl | |- ( ph -> ( F ` A ) = (/) ) |
| 12 | 11 | adantr | |- ( ( ph /\ B e. X ) -> ( F ` A ) = (/) ) |
| 13 | 12 4 | eqtr4d | |- ( ( ph /\ B e. X ) -> ( F ` A ) = ( F ` B ) ) |
| 14 | 11 | adantr | |- ( ( ph /\ -. B e. X ) -> ( F ` A ) = (/) ) |
| 15 | 7 | eleq2i | |- ( B e. dom F <-> B e. X ) |
| 16 | ndmfv | |- ( -. B e. dom F -> ( F ` B ) = (/) ) |
|
| 17 | 15 16 | sylnbir | |- ( -. B e. X -> ( F ` B ) = (/) ) |
| 18 | 17 | adantl | |- ( ( ph /\ -. B e. X ) -> ( F ` B ) = (/) ) |
| 19 | 14 18 | eqtr4d | |- ( ( ph /\ -. B e. X ) -> ( F ` A ) = ( F ` B ) ) |
| 20 | 13 19 | pm2.61dan | |- ( ph -> ( F ` A ) = ( F ` B ) ) |