This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real numbers, restricted to RR* \ { -oo } , form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp . (Contributed by Mario Carneiro, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrs1mnd.1 | |- R = ( RR*s |`s ( RR* \ { -oo } ) ) |
|
| Assertion | xrs1mnd | |- R e. Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrs1mnd.1 | |- R = ( RR*s |`s ( RR* \ { -oo } ) ) |
|
| 2 | difss | |- ( RR* \ { -oo } ) C_ RR* |
|
| 3 | xrsbas | |- RR* = ( Base ` RR*s ) |
|
| 4 | 1 3 | ressbas2 | |- ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` R ) ) |
| 5 | 2 4 | mp1i | |- ( T. -> ( RR* \ { -oo } ) = ( Base ` R ) ) |
| 6 | xrex | |- RR* e. _V |
|
| 7 | 6 | difexi | |- ( RR* \ { -oo } ) e. _V |
| 8 | xrsadd | |- +e = ( +g ` RR*s ) |
|
| 9 | 1 8 | ressplusg | |- ( ( RR* \ { -oo } ) e. _V -> +e = ( +g ` R ) ) |
| 10 | 7 9 | mp1i | |- ( T. -> +e = ( +g ` R ) ) |
| 11 | eldifsn | |- ( x e. ( RR* \ { -oo } ) <-> ( x e. RR* /\ x =/= -oo ) ) |
|
| 12 | eldifsn | |- ( y e. ( RR* \ { -oo } ) <-> ( y e. RR* /\ y =/= -oo ) ) |
|
| 13 | xaddcl | |- ( ( x e. RR* /\ y e. RR* ) -> ( x +e y ) e. RR* ) |
|
| 14 | 13 | ad2ant2r | |- ( ( ( x e. RR* /\ x =/= -oo ) /\ ( y e. RR* /\ y =/= -oo ) ) -> ( x +e y ) e. RR* ) |
| 15 | xaddnemnf | |- ( ( ( x e. RR* /\ x =/= -oo ) /\ ( y e. RR* /\ y =/= -oo ) ) -> ( x +e y ) =/= -oo ) |
|
| 16 | eldifsn | |- ( ( x +e y ) e. ( RR* \ { -oo } ) <-> ( ( x +e y ) e. RR* /\ ( x +e y ) =/= -oo ) ) |
|
| 17 | 14 15 16 | sylanbrc | |- ( ( ( x e. RR* /\ x =/= -oo ) /\ ( y e. RR* /\ y =/= -oo ) ) -> ( x +e y ) e. ( RR* \ { -oo } ) ) |
| 18 | 11 12 17 | syl2anb | |- ( ( x e. ( RR* \ { -oo } ) /\ y e. ( RR* \ { -oo } ) ) -> ( x +e y ) e. ( RR* \ { -oo } ) ) |
| 19 | 18 | 3adant1 | |- ( ( T. /\ x e. ( RR* \ { -oo } ) /\ y e. ( RR* \ { -oo } ) ) -> ( x +e y ) e. ( RR* \ { -oo } ) ) |
| 20 | eldifsn | |- ( z e. ( RR* \ { -oo } ) <-> ( z e. RR* /\ z =/= -oo ) ) |
|
| 21 | xaddass | |- ( ( ( x e. RR* /\ x =/= -oo ) /\ ( y e. RR* /\ y =/= -oo ) /\ ( z e. RR* /\ z =/= -oo ) ) -> ( ( x +e y ) +e z ) = ( x +e ( y +e z ) ) ) |
|
| 22 | 11 12 20 21 | syl3anb | |- ( ( x e. ( RR* \ { -oo } ) /\ y e. ( RR* \ { -oo } ) /\ z e. ( RR* \ { -oo } ) ) -> ( ( x +e y ) +e z ) = ( x +e ( y +e z ) ) ) |
| 23 | 22 | adantl | |- ( ( T. /\ ( x e. ( RR* \ { -oo } ) /\ y e. ( RR* \ { -oo } ) /\ z e. ( RR* \ { -oo } ) ) ) -> ( ( x +e y ) +e z ) = ( x +e ( y +e z ) ) ) |
| 24 | 0re | |- 0 e. RR |
|
| 25 | rexr | |- ( 0 e. RR -> 0 e. RR* ) |
|
| 26 | renemnf | |- ( 0 e. RR -> 0 =/= -oo ) |
|
| 27 | eldifsn | |- ( 0 e. ( RR* \ { -oo } ) <-> ( 0 e. RR* /\ 0 =/= -oo ) ) |
|
| 28 | 25 26 27 | sylanbrc | |- ( 0 e. RR -> 0 e. ( RR* \ { -oo } ) ) |
| 29 | 24 28 | mp1i | |- ( T. -> 0 e. ( RR* \ { -oo } ) ) |
| 30 | eldifi | |- ( x e. ( RR* \ { -oo } ) -> x e. RR* ) |
|
| 31 | 30 | adantl | |- ( ( T. /\ x e. ( RR* \ { -oo } ) ) -> x e. RR* ) |
| 32 | xaddlid | |- ( x e. RR* -> ( 0 +e x ) = x ) |
|
| 33 | 31 32 | syl | |- ( ( T. /\ x e. ( RR* \ { -oo } ) ) -> ( 0 +e x ) = x ) |
| 34 | 31 | xaddridd | |- ( ( T. /\ x e. ( RR* \ { -oo } ) ) -> ( x +e 0 ) = x ) |
| 35 | 5 10 19 23 29 33 34 | ismndd | |- ( T. -> R e. Mnd ) |
| 36 | 35 | mptru | |- R e. Mnd |