This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base of the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 30-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrge0base | |- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 2 | dfss2 | |- ( ( 0 [,] +oo ) C_ RR* <-> ( ( 0 [,] +oo ) i^i RR* ) = ( 0 [,] +oo ) ) |
|
| 3 | 1 2 | mpbi | |- ( ( 0 [,] +oo ) i^i RR* ) = ( 0 [,] +oo ) |
| 4 | ovex | |- ( 0 [,] +oo ) e. _V |
|
| 5 | eqid | |- ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
|
| 6 | xrsbas | |- RR* = ( Base ` RR*s ) |
|
| 7 | 5 6 | ressbas | |- ( ( 0 [,] +oo ) e. _V -> ( ( 0 [,] +oo ) i^i RR* ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) |
| 8 | 4 7 | ax-mp | |- ( ( 0 [,] +oo ) i^i RR* ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 9 | 3 8 | eqtr3i | |- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |