This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an infinite Cartesian product. See df-ixp for discussion of the notation. (Contributed by NM, 28-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elixp2 | |- ( F e. X_ x e. A B <-> ( F e. _V /\ F Fn A /\ A. x e. A ( F ` x ) e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 | |- ( f = F -> ( f Fn A <-> F Fn A ) ) |
|
| 2 | fveq1 | |- ( f = F -> ( f ` x ) = ( F ` x ) ) |
|
| 3 | 2 | eleq1d | |- ( f = F -> ( ( f ` x ) e. B <-> ( F ` x ) e. B ) ) |
| 4 | 3 | ralbidv | |- ( f = F -> ( A. x e. A ( f ` x ) e. B <-> A. x e. A ( F ` x ) e. B ) ) |
| 5 | 1 4 | anbi12d | |- ( f = F -> ( ( f Fn A /\ A. x e. A ( f ` x ) e. B ) <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) ) |
| 6 | dfixp | |- X_ x e. A B = { f | ( f Fn A /\ A. x e. A ( f ` x ) e. B ) } |
|
| 7 | 5 6 | elab2g | |- ( F e. _V -> ( F e. X_ x e. A B <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) ) |
| 8 | 7 | pm5.32i | |- ( ( F e. _V /\ F e. X_ x e. A B ) <-> ( F e. _V /\ ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) ) |
| 9 | elex | |- ( F e. X_ x e. A B -> F e. _V ) |
|
| 10 | 9 | pm4.71ri | |- ( F e. X_ x e. A B <-> ( F e. _V /\ F e. X_ x e. A B ) ) |
| 11 | 3anass | |- ( ( F e. _V /\ F Fn A /\ A. x e. A ( F ` x ) e. B ) <-> ( F e. _V /\ ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) ) |
|
| 12 | 8 10 11 | 3bitr4i | |- ( F e. X_ x e. A B <-> ( F e. _V /\ F Fn A /\ A. x e. A ( F ` x ) e. B ) ) |