This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of the value of ( cardA ) that does not require AC to prove. (Contributed by Mario Carneiro, 7-Jan-2013) (Revised by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardval3 | |- ( A e. dom card -> ( card ` A ) = |^| { x e. On | x ~~ A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. dom card -> A e. _V ) |
|
| 2 | isnum2 | |- ( A e. dom card <-> E. x e. On x ~~ A ) |
|
| 3 | rabn0 | |- ( { x e. On | x ~~ A } =/= (/) <-> E. x e. On x ~~ A ) |
|
| 4 | intex | |- ( { x e. On | x ~~ A } =/= (/) <-> |^| { x e. On | x ~~ A } e. _V ) |
|
| 5 | 2 3 4 | 3bitr2i | |- ( A e. dom card <-> |^| { x e. On | x ~~ A } e. _V ) |
| 6 | 5 | biimpi | |- ( A e. dom card -> |^| { x e. On | x ~~ A } e. _V ) |
| 7 | breq2 | |- ( y = A -> ( x ~~ y <-> x ~~ A ) ) |
|
| 8 | 7 | rabbidv | |- ( y = A -> { x e. On | x ~~ y } = { x e. On | x ~~ A } ) |
| 9 | 8 | inteqd | |- ( y = A -> |^| { x e. On | x ~~ y } = |^| { x e. On | x ~~ A } ) |
| 10 | df-card | |- card = ( y e. _V |-> |^| { x e. On | x ~~ y } ) |
|
| 11 | 9 10 | fvmptg | |- ( ( A e. _V /\ |^| { x e. On | x ~~ A } e. _V ) -> ( card ` A ) = |^| { x e. On | x ~~ A } ) |
| 12 | 1 6 11 | syl2anc | |- ( A e. dom card -> ( card ` A ) = |^| { x e. On | x ~~ A } ) |