This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinal and ordinal products are always equinumerous. Exercise 10 of TakeutiZaring p. 89. (Contributed by Mario Carneiro, 3-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omxpen | |- ( ( A e. On /\ B e. On ) -> ( A .o B ) ~~ ( A X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcomeng | |- ( ( A e. On /\ B e. On ) -> ( A X. B ) ~~ ( B X. A ) ) |
|
| 2 | xpexg | |- ( ( B e. On /\ A e. On ) -> ( B X. A ) e. _V ) |
|
| 3 | 2 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( B X. A ) e. _V ) |
| 4 | omcl | |- ( ( A e. On /\ B e. On ) -> ( A .o B ) e. On ) |
|
| 5 | eqid | |- ( x e. B , y e. A |-> ( ( A .o x ) +o y ) ) = ( x e. B , y e. A |-> ( ( A .o x ) +o y ) ) |
|
| 6 | 5 | omxpenlem | |- ( ( A e. On /\ B e. On ) -> ( x e. B , y e. A |-> ( ( A .o x ) +o y ) ) : ( B X. A ) -1-1-onto-> ( A .o B ) ) |
| 7 | f1oen2g | |- ( ( ( B X. A ) e. _V /\ ( A .o B ) e. On /\ ( x e. B , y e. A |-> ( ( A .o x ) +o y ) ) : ( B X. A ) -1-1-onto-> ( A .o B ) ) -> ( B X. A ) ~~ ( A .o B ) ) |
|
| 8 | 3 4 6 7 | syl3anc | |- ( ( A e. On /\ B e. On ) -> ( B X. A ) ~~ ( A .o B ) ) |
| 9 | entr | |- ( ( ( A X. B ) ~~ ( B X. A ) /\ ( B X. A ) ~~ ( A .o B ) ) -> ( A X. B ) ~~ ( A .o B ) ) |
|
| 10 | 1 8 9 | syl2anc | |- ( ( A e. On /\ B e. On ) -> ( A X. B ) ~~ ( A .o B ) ) |
| 11 | 10 | ensymd | |- ( ( A e. On /\ B e. On ) -> ( A .o B ) ~~ ( A X. B ) ) |